首页> 外文OA文献 >Schur complement preconditioners for surface integral-equation formulations of dielectric problems solved with the multilevel fast multipole algorithm
【2h】

Schur complement preconditioners for surface integral-equation formulations of dielectric problems solved with the multilevel fast multipole algorithm

机译:通过多级快速多极算法求解介电问题的表面积分方程公式的Schur补码预处理器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Surface integral-equation methods accelerated with the multilevel fast multipole algorithm (MLFMA) provide a suitable mechanism for electromagnetic analysis of real-life dielectric problems. Unlike the perfect-electric-conductor case, discretizations of surface formulations of dielectric problems yield 2 × 2 partitioned linear systems. Among various surface formulations, the combined tangential formulation (CTF) is the closest to the category of first-kind integral equations, and hence it yields the most accurate results, particularly when the dielectric constant is high and/or the dielectric problem involves sharp edges and corners. However, matrix equations of CTF are highly ill-conditioned, and their iterative solutions require powerful preconditioners for convergence. Second-kind surface integral-equation formulations yield better conditioned systems, but their conditionings significantly degrade when real-life problems include high dielectric constants. In this paper, for the first time in the context of surface integral-equation methods of dielectric objects, we propose Schur complement preconditioners to increase their robustness and efficiency. First, we approximate the dense system matrix by a sparse near-field matrix, which is formed naturally by MLFMA. The Schur complement preconditioning requires approximate solutions of systems involving the (1,1) partition and the Schur complement. We approximate the inverse of the (1,1) partition with a sparse approximate inverse (SAI) based on the Frobenius norm minimization. For the Schur complement, we first approximate it via incomplete sparse matrix-matrix multiplications, and then we generate its approximate inverse with the same SAI technique. Numerical experiments on sphere, lens, and photonic crystal problems demonstrate the effectiveness of the proposed preconditioners. In particular, the results for the photonic crystal problem, which has both surface singularity and a high dielectric constant, shows that accurate CTF solutions for such problems can be obtained even faster than with second-kind integral equation formulations, with the acceleration provided by the proposed Schur complement preconditioners. © 2011 Society for Industrial and Applied Mathematics.
机译:利用多级快速多极算法(MLFMA)加速的表面积分方程方法为电磁分析现实生活中的介电问题提供了一种合适的机制。与理想导体不同,介电问题的表面配方离散化产生2×2分区线性系统。在各种表面公式中,组合切向公式(CTF)最接近第一类积分方程的类别,因此,它得出的结果最准确,尤其是在介电常数高和/或介电问题涉及尖锐边缘时和角落。但是,CTF的矩阵方程是病态严重的,其迭代解需要强大的前置条件才能收敛。第二类表面积分方程公式可产生更好的条件系统,但是当实际问题包括高介电常数时,它们的条件会大大降低。在本文中,我们首次在介电对象的表面积分方程方法中提出了Schur补码预处理器,以提高其鲁棒性和效率。首先,我们用MLFMA自然形成的稀疏近场矩阵来近似稠密系统矩阵。 Schur补语预处理需要包含(1,1)分区和Schur补语的系统的近似解。我们基于Frobenius范数最小化使用稀疏近似逆(SAI)近似(1,1)分区的逆。对于Schur补码,我们首先通过不完整的稀疏矩阵-矩阵乘法对其进行近似,然后使用相同的SAI技术生成其近似逆。关于球,透镜和光子晶体问题的数值实验证明了所提出的预处理器的有效性。特别是,具有表面奇异性和高介电常数的光子晶体问题的结果表明,与第二类积分方程式相比,对于此类问题的精确CTF解甚至可以更快地获得,并且由提出了Schur补码预处理器。 ©2011工业和应用数学协会。

著录项

  • 作者

    Malas, T.; Gürel, L.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号